Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Language
Document Type
Year range
1.
Energies ; 15(2):628, 2022.
Article in English | ProQuest Central | ID: covidwho-1633466

ABSTRACT

Population growth has led to an increased demand for raw minerals and energy resources;however, their supply cannot easily be provided in the same proportions. Modern technologies contain materials that are becoming more finely intermixed because of the broadening palette of elements used, and this outcome creates certain limitations for recycling. The recovery and separation of individual elements, critical materials and valuable metals from complex systems requires complex energy-consuming solutions with many hazardous chemicals used. Significant pressure is brought to bear on the improvement of separation and recycling approaches by the need to balance sustainability, efficiency, and environmental impacts. Due to the increase in environmental consciousness in chemical research and industry, the challenge for a sustainable environment calls for clean procedures that avoid the use of harmful organic solvents. Ionic liquids, also known as molten salts and future solvents, are endowed with unique features that have already had a promising impact on cutting-edge science and technologies. This review aims to address the current challenges associated with the energy-efficient design, recovery, recycling, and separation of valuable metals employing ionic liquids.

SELECTION OF CITATIONS
SEARCH DETAIL